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Context-Free Grammars

• Context-free grammars are equivalent to Type 2 Generative 
Grammars in Chomsky-Schützenberger’s hierarchy

• Context-free grammars can be more powerful than regular 
grammars.

• They can recognize any context-free language, are very well-
adapted to describe structured and embedded linguistic units, 
and can be processed by push-down automata.



• TEXT > Locate
• Queries are regular expressions

From regular expressions to context-free grammars



IBM = International Business Machine | 
IBM | Big Blue | the Armonk firm

From regular expressions to context-free grammars

• Queries can be named



<buy> = buy | buys | buying | bought | 
buyer | buyers
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From regular expressions to context-free grammars

• Queries can be named and then re-used



<buy> = buy | buys | buying | bought | 
buyer | buyers

<trade> = <buy> | <sale> | <acquire> | 
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<op> = <company> <trade> <company> | 
<company> <hire> <person>
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NLP Application: A thematic analysis
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Use Context-Free Grammars to describe regular languages

• Describe all sentences that have two complements, e.g. The 
very mean neighbor gave the red pen to my extremely rich 
cousin

<DET> ((<ADV>|<E>)<A>)* <N>
<V>
<DET> ((<ADV>|<E>)<A>)* <N>
to
<DET> ((<ADV>|<E>)<A>)* <N>
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Use Context-Free Grammars to describe regular languages

• Re-use rules in an “engineering” approach:

NP = <DET> ((<ADV>|<E>)<A>)* <N>

Main = NP <V> NP to NP



• A	context-free	grammar	that	recognizes	Roman	
Numerals:

Units =	I	|	II	|	III	|	IV	|	V	|	VI	|	VII	|	VIII	|	IX
Tens =	X	|	XX		|	XXX		|	XL		|	L		|	LX		|	LXX		|	LXXX	|	
XC
RomanNumerals =	Tens (Units |	<E>)	|	Units

Use Context-Free Grammars to describe regular languages



• Exercise:	Complement	the	grammar	so	that	it	
recognizes	Roman	Numerals	up	to	3,999
Units =	I	|	II	|	III	|	IV	|	V	|	VI	|	VII	|	VIII	|	IX
Tens =	X	|	XX		|	XXX		|	XL		|	L		|	LX		|	LXX		|	LXXX	|	
XC
Hundreds	=	...
Thousands	=	...
RomanNumerals =	...

Use Context-Free Grammars to describe regular languages



• Exercise:	Complement	the	grammar	so	that	it	
recognizes	Roman	Numerals	up	to	3,999

Units = I | II | III | IV | V | VI | VII | VIII | IX
Tens = X | XX  | XXX  | XL  | L  | LX  | LXX  | LXXX | XC
Hundreds = C | CC | CCC | CD | D | DC | DCC | DCCC | CM
Thousands = M | MM | MMM
RomanNumerals = (<E>|Thousands) (<E>|Hundreds) 
(<E>|Tens) (<E>|Units)

First	attempt...

Use Context-Free Grammars to describe regular languages



• Exercise:	Complement	the	grammar	so	that	it	
recognizes	Roman	Numerals	up	to	3,999

Units = I | II | III | IV | V | VI | VII | VIII | IX
Tens = X | XX  | XXX  | XL  | L  | LX  | LXX  | LXXX | XC
Hundreds = C | CC | CCC | CD | D | DC | DCC | DCCC | CM
Thousands = M | MM | MMM
RomanNumerals = (<E>|Thousands) (<E>|Hundreds) 
(<E>|Tens) (<E>|Units)

First	attempt	incorrect	because	the	grammar	
recognizes	the	empty	string

Use Context-Free Grammars to describe regular languages



• Exercise:	Complement	the	grammar	so	that	it	
recognizes	Roman	Numerals	up	to	3,999

Units = I | II | III | IV | V | VI | VII | VIII | IX
Tens = X | XX  | XXX  | XL  | L  | LX  | LXX  | LXXX | XC
Hundreds = C | CC | CCC | CD | D | DC | DCC | DCCC | CM
Thousands = M | MM | MMM
RomanNumerals =

(<E>|Thousands) (<E>|Hundreds) (<E>|Tens) Units	|
(<E>|Thousands) (<E>|Hundreds) Tens	|
(<E>|Thousands) Hundreds	|
Thousands

Use Context-Free Grammars to describe regular languages



• Enhancing	the	grammar	so	that	it	produces	the	
number	in	Arabic	notation:

Units = I/1 | II/2| III/3 | IV/4 | V/5 | VI/6 | VII/7 | VIII/8 | IX/9
Tens = X/1 | XX/2 | XXX/3 | XL/4 | L/5 | LX/6 | LXX/7 | LXXX/8 | XC/9
Hundreds = C/1 | CC/2 | CCC/3 | CD/4 | D/5 | DC/6 | DCC/7 | DCCC/8 | 
CM/9
Thousands = M/1 | MM/2 | MMM/3
RomanNumerals =

Thousands (<E>/0|Hundreds) (<E>/0|Tens) (<E>/0|Units) |
Hundreds (<E>/0|Tens) (<E>/0|Units) |
Tens (<E>/0|Units) |
Units

Enhanced Context-Free Grammars



Recursion
• In	a	Context-Free	Grammar,	the	expression	(to	
the	right)	can	contain	auxiliary	symbols

• What	happens	if	a	rule	is	defined	recursively	from	
itself?

Sentence =	Subject Verb (<E>	|	that	Sentence)
Subject =	Jean |	Mary	|	Eva	|	Joe
Verb	=	said	|	hoped	| thought	|	slept

Jean	said	that	Mary	hoped	that	Eva	thought	that	Joe	slept
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There	are	three	types	of	recursion:

• Left	Recursion
NP =	NP (from |	in |	around)	Paris |	the	house

• Right	Recursion
Sentence =	NP	(thought	|	said	|	hopes	|	saw)	NP
NP =	Joe	|	Mary	|	that	Sentence

• General	Recursion
Sentence =	DET	NOUN (that	|	<E>)	Sentence	VERB

Recursion



Remove Left Recursion

• Left Recursion:
NP =	NP (from |	in |	around)	Paris |	the	house

• Left recursions can be removed automatically:
NP = the	house	 (	(from |	in |	around)	Paris	)*

Recursion



• Right Recursion:
Sentence =	NP	(thought	|	said	|	hopes	|	saw)	NP
NP =	Joe	|	Mary	|	that	Sentence

• Right recursions can be removed automatically:
Sentence =	(	(Joe	|	Mary) (thought	|	said	|	hopes	|	saw)	that	)*

(Joe	|	Mary)	(thought	|	said	|	hopes	|	saw)	

Recursion
Remove Right Recursion



Example of a general recursion

Sentence =	DET	NOUN ((that	|	<E>)	Sentence	VERB |	VERB)

The cat is sleeping
The cat that my cousin bought is sleeping
? The cat that the neighbour my cousin knows bought is sleeping
* The cat that the neighbour the cousin her friend saw bought is sleeping
…

Recursion
Cannot remove General Recursion



• Linguists should not hesitate to use recursions to simplify 
their grammar

• NooJ can remove left and right recursions automatically. If the 
resulting grammar does not contain any more recursion, it is 
equivalent to a regular grammar. NooJ can then apply it to 
texts very efficiently.

• NooJ cannot remove all recursions. However, NooJ can 
impose a limitation on the depth of the recursion (e.g., 
maximum 5 embedded relative clauses). The resulting 
grammar can then be transformed into a regular grammar and 
thus can be applied to texts efficiently.

Recursion
Conclusions



CONGRATULATIONS
You know how to construct Context-Free 

Grammars and apply them to texts to 
implement various NLP applications


