
15. Unrestricted Grammars

This series of tutorials is based upon work from COST Action
Multi3Generation CA18231, supported by COST

(European Cooperation in Science and Technology).

COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our
Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their
peers. This boosts their research, career and innovation, cf. www.cost.eu

http://www.cost.eu/

Unrestricted Grammars

• Unrestricted grammars are equivalent to Type 0 Generative
Grammars in Chomsky-Schützenberger’s hierarchy

• Unrestricted grammars can be more powerful than regular,
context-free and context-sensitive grammars.

• They can recognize any recursively enumerated language
(therefore, any possible natural language) and can be
processed by Turing machines.

• Head-driven Phrase Structure Grammars (HPSG) are
equivalent to unrestricted grammars.

Unrestricted Grammars in NooJ

• Unrestricted grammars are similar to context-sensitive
grammars; they also contain variables and constraints.

• They can be used to replace matching text (recognized by the
grammar input) with the corresponding grammar output

• The grammar output can be anything, e.g., transformation of the
text, paraphrases, semantic representations, etc.

• If associated with multilingual dictionaries, unrestricted
grammars can produce translations

Unrestricted Grammars in NooJ

• Unrestricted grammars contain variables that can be copied to
the output, e.g.:

(S1 Joe arrived). (S2 Eva left)/S1 and S2
Joe arrived. Eva left. ⟶ Joe arrived and Eva left

• Morphological operators can be applied to variables, e.g.:

He (V eats)/They want to $V_
He eats⟶ They want to eat

Transformations
A simple transformation

Joe sees Mary ⟶ Mary is seen by Joe

• In the dictionary, the entry see,V+FLX=SEE represents the forms see (+STD), sees
(+PR+3+s), saw (+PRET), seen (+PP), seing (+G)

• If $V = “sees”, then $V_ = “see” (the lexical entry),
• then $V_V represents all the verbal forms associated with see, i.e., “see”, “sees”,

“saw”, “seen” and “seing”
• then $V_V+PP = “seen”

Unrestricted Grammars
eSPERTo: System for Paraphrasing in Editing and Revision of Text

(A. Barreiro, C. Mota, INESC-ID)

açoriano,A+FLX=ALTO
+Table=SAN+Nhum+Vcopser+UMNclas+UmModi
f+NclassPserde+NclassPorigem+NclassPnatural
idade+NAdj+DRV=nometop:Açores
…
iraquiano,A+FLX=ALTO+AN+lang+EN=Iraqi
+Table=SAN+Nhum+Vcopser+Vcoptornarse+UM
Nclas+UmModif+NclassPserde+NclassPorigem+
NclassPnacionalidade+NclassPnaturalidade+NA
dj+DRV=nometop:Iraque

Unrestricted Grammars
eSPERTo: System for Paraphrasing in Editing and Revision of Text

(A. Barreiro, C. Mota, INESC-ID)

Transformations
How many simple transformations are there?

[Pron-0] John ate an apple = He ate an apple
[Pron-1] John ate an apple = John ate it

[Pron-2] John gave an apple to Marie = John gave her an apple
[Passive] John ate an apple = an apple was eaten by John
[Negation] John ate an apple = John did not eat an apple
[Cleft-0] John ate an apple = it is John who ate an apple
[Cleft-1] John ate an apple = it is an apple that John ate

[Question-0] John ate an apple = Who ate an apple?
[Question-1] John ate an apple = What did John eat?
[Question-V] John ate an apple = What did John do?
[Nom-0] John loves apples = John is an apple lover

[Nom-V] John gave the card to Mary = The card is John’s gift to Mary
…

Transformations
On grammar per transformation?

Transformations
Or two?

Active to Passive

Passive to Active

Transformations
Actually: many more!

Transformations
How many simple transformations are there?

[Pron-0] John ate an apple = He ate an apple ⟶ [Passive1] = An apple was eaten by him
[Pron-2] John gave an apple to Marie = John gave her an apple ⟶ [Passive2] = She was given an apple by
John
[Passive] John ate an apple = an apple was eaten by John ⟶ [Passive3]
[Negation] John ate an apple = John did not eat an apple ⟶ [Passive4] = An apple was not eaten by John
[Cleft-0] John ate an apple = it is John who ate an apple ⟶ [Passive5]
[Cleft-1] John ate an apple = it is an apple that John ate ⟶ [Passive6] = It is an apple that was eaten by John
[Question-0] John ate an apple = Who ate an apple? ⟶ [Passive7] = By Whom an apple was eaten?
[Question-1] John ate an apple = What did John eat? ⟶ [Passive8] = What was eaten by John?
[Question-V] John ate an apple = What did John do? ⟶ [Passive9] = What was done by John?
[Nom-0] John loves apples = John is an apple lover ⟶ [Passive10]
[Nom-V] John gave the card to Mary = The card is John’s gift to Mary ⟶ [Passive11]
…
Every single transformed sentence may itself be transformed with a [Passive] transformation...
If there are 1,000 elementary transformations, then there are 1,000×1,000 combinations of 2
transformations, 1,0003 combinations of 3 transformations, and 1,0007 combinations like:

It is not like Joe wanted to stop being her lover
[Cleft-0][Pron-1][Preterit][Negation][Aspect][Modal][Nominalization]

NooJ solution to transformations:
Combine Parsing and Generation

• All NooJ linguistic resources are neutral, i.e., they can be used
to parse texts, or to generate texts.

• For example, morphological grammar France recognizes all
the forms derived and inflected from France:

• This grammar can also be used to
produce all the forms described in
the grammar via NooJ menu item:

GRAMMAR > Generate Language

NooJ solution to transformations:
Combine Parsing and Generation

• This grammar can also be used to produce all the forms described in
the grammar via NooJ menu item:

GRAMMAR > Generate Language

NooJ solution to transformations:
Combine Parsing and Generation

• This grammar can also be used to produce all the forms described in
the grammar via NooJ menu item:

GRAMMAR > Generate Language

NooJ solution to transformations:
Combine Parsing and Generation
GRAMMAR > Generate Language

NooJ solution to transformations:
Combine Parsing and Generation

A variable stores an ALU; all its references are linked

NooJ solution to transformations:
Combine Parsing and Generation

All variables references are linked

• Variables are set during the parsing step
• When parsing the text John loves Mary:

– variable $Subject is set to “John”
– variable $Verb is set to “loves”
– variable $Object is set to “Mary”

• When exploring the graph to produce all the sequences recognized
by the grammar, NooJ replaces the variables with their value

NooJ solution to transformations:
Combine Parsing and Generation

NooJ solution to transformations:
Combine Parsing and Generation

All variables references are linked

• Variables are set during the parsing step
• When parsing the text John loves Mary:

– variable $Subject is set to “John”
– variable $Verb is set to “loves”
– variable $Object is set to “Mary”

• When exploring the graph to produce all the sequences recognized
by the grammar, NooJ replaces the variables with their value

• The grammar may produce properties in its outputs, e.g., the name
of the transformations: [Passive], [Pron1], [Aspect]...

NooJ solution to transformations:
Combine Parsing and Generation

Name the transformations in the outputs

NooJ solution to transformations:
Combine Parsing and Generation

Produce all the transformed sentences from Joe loves Lea

NooJ solution to transformations:
In Italian

Produce all the transformed sentences from Maria osserva om ragazzo

NooJ solution to transformations:
In French

Produce all the transformed sentences from Luc aime Léa

Unrestricted Grammars in NooJ
Machine Translation

In the dictionary:

petit,A+EN=little
crayon,N+FLX=TABLE+EN=pencil
rouge,A+EN=red

if $A = <petit,A+EN=little>, then AEN = “little”
if $N = <crayon+FLX=TABLE+EN=little>, then NEN_N+p = ”pencils”

Unrestricted Grammars in NooJ
Machine Translation

le petit crayon rouge ⟶ the little red pen

Unrestricted Grammars in NooJ
Machine Translation

Automatic Machine Translation
Arabic-French MT (Fehri, 2015-2022), Belarusian-Spanish (Veka, Yakubovich, 2016), Greek-
Spanish MT (Papadopoulou, Chadjipapa, 2013), English-Italian MT (Maisto, Guarasci, 2016,

Portuguese-English MT (Barreiro, 2008), etc.

Many applications of unrestricted grammars

• Transcribe French⇄Arabic proper names
• Transcribe Phonemic⇄Orthographic notations
• Rewrite a scientific medical text with simpler paraphrases
• Parse a text, and produce its abstract
• Parse a question, e.g., “Who built the Eiffel Tower”, and produce all

the potential answers “X built the Eiffel Tower”, “The Eiffel Tower was
built by X”, “X has been instrumental in building the Eiffel Tower”, etc.
then look for these answer on the Web

• Parse a text, and produce its semantic representation, either in
Predicate form GIVE(Joe, apple, Eva), or in XML RDF format

• etc.

Many applications (cf. references)

Many language resources (30 modules downloadable)

CONGRATULATIONS

You know how to construct unrestricted
grammars to perform transformations,

compute paraphrases, produce semantic
analyses and compute translations.

