
11. Context-Free Grammars

This series of tutorials is based upon work from COST Action
Multi3Generation CA18231, supported by COST

(European Cooperation in Science and Technology).

COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our
Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their
peers. This boosts their research, career and innovation, cf. www.cost.eu

http://www.cost.eu/

Context-Free Grammars

• Context-free grammars are equivalent to Type 2 Generative
Grammars in Chomsky-Schützenberger’s hierarchy

• Context-free grammars can be more powerful than regular
grammars.

• They can recognize any context-free language, are very well-
adapted to describe structured and embedded linguistic units,
and can be processed by push-down automata.

• TEXT > Locate
• Queries are regular expressions

From regular expressions to context-free grammars

IBM = International Business Machine |
IBM | Big Blue | the Armonk firm

From regular expressions to context-free grammars

• Queries can be named

<buy> = buy | buys | buying | bought |
buyer | buyers

From regular expressions to context-free grammars

• Queries can be named

<buy> = buy | buys | buying | bought |
buyer | buyers

<trade> = <buy> | <sale> | <acquire> |
<investment> | <purchase> | <deal>

From regular expressions to context-free grammars

• Queries can be named and then re-used

<buy> = buy | buys | buying | bought |
buyer | buyers

<trade> = <buy> | <sale> | <acquire> |
<investment> | <purchase> | <deal>

<op> = <company> <trade> <company> |
<company> <hire> <person>

From regular expressions to context-free grammars

• Queries can be named and then re-used

<buy> = buy | buys | buying | bought |
buyer | buyers

<trade> = <buy> | <sale> | <acquire> |
<investment> | <purchase> | <deal>

<op> = <company> <trade> <company> |
<company> <hire> <person>

From regular expressions to context-free grammars

• Queries can be named and then re-used

NLP Application: A thematic analysis

NLP Application: A thematic analysis

NLP Application: A thematic analysis

Use Context-Free Grammars to describe regular languages

• Describe all sentences that have two complements, e.g. The
very mean neighbor gave the red pen to my extremely rich
cousin

<DET> ((<ADV>|<E>)<A>)* <N>
<V>
<DET> ((<ADV>|<E>)<A>)* <N>
to
<DET> ((<ADV>|<E>)<A>)* <N>

Use Context-Free Grammars to describe regular languages

• Describe all sentences that have two complements, e.g. The
very mean neighbor gave the red pen to my extremely rich
cousin

<DET> ((<ADV>|<E>)<A>)* <N>
<V>
<DET> ((<ADV>|<E>)<A>)* <N>
to
<DET> ((<ADV>|<E>)<A>)* <N>

Use Context-Free Grammars to describe regular languages

• Re-use rules in an “engineering” approach:

NP = <DET> ((<ADV>|<E>)<A>)* <N>

Main = NP <V> NP to NP

• A	context-free	grammar	that	recognizes	Roman	
Numerals:

Units =	I	|	II	|	III	|	IV	|	V	|	VI	|	VII	|	VIII	|	IX
Tens =	X	|	XX		|	XXX		|	XL		|	L		|	LX		|	LXX		|	LXXX	|	
XC
RomanNumerals =	Tens (Units |	<E>)	|	Units

Use Context-Free Grammars to describe regular languages

• Exercise:	Complement	the	grammar	so	that	it	
recognizes	Roman	Numerals	up	to	3,999
Units =	I	|	II	|	III	|	IV	|	V	|	VI	|	VII	|	VIII	|	IX
Tens =	X	|	XX		|	XXX		|	XL		|	L		|	LX		|	LXX		|	LXXX	|	
XC
Hundreds	=	...
Thousands	=	...
RomanNumerals =	...

Use Context-Free Grammars to describe regular languages

• Exercise:	Complement	the	grammar	so	that	it	
recognizes	Roman	Numerals	up	to	3,999

Units = I | II | III | IV | V | VI | VII | VIII | IX
Tens = X | XX | XXX | XL | L | LX | LXX | LXXX | XC
Hundreds = C | CC | CCC | CD | D | DC | DCC | DCCC | CM
Thousands = M | MM | MMM
RomanNumerals = (<E>|Thousands) (<E>|Hundreds)
(<E>|Tens) (<E>|Units)

First	attempt...

Use Context-Free Grammars to describe regular languages

• Exercise:	Complement	the	grammar	so	that	it	
recognizes	Roman	Numerals	up	to	3,999

Units = I | II | III | IV | V | VI | VII | VIII | IX
Tens = X | XX | XXX | XL | L | LX | LXX | LXXX | XC
Hundreds = C | CC | CCC | CD | D | DC | DCC | DCCC | CM
Thousands = M | MM | MMM
RomanNumerals = (<E>|Thousands) (<E>|Hundreds)
(<E>|Tens) (<E>|Units)

First	attempt	incorrect	because	the	grammar	
recognizes	the	empty	string

Use Context-Free Grammars to describe regular languages

• Exercise:	Complement	the	grammar	so	that	it	
recognizes	Roman	Numerals	up	to	3,999

Units = I | II | III | IV | V | VI | VII | VIII | IX
Tens = X | XX | XXX | XL | L | LX | LXX | LXXX | XC
Hundreds = C | CC | CCC | CD | D | DC | DCC | DCCC | CM
Thousands = M | MM | MMM
RomanNumerals =

(<E>|Thousands) (<E>|Hundreds) (<E>|Tens) Units	|
(<E>|Thousands) (<E>|Hundreds) Tens	|
(<E>|Thousands) Hundreds	|
Thousands

Use Context-Free Grammars to describe regular languages

• Enhancing	the	grammar	so	that	it	produces	the	
number	in	Arabic	notation:

Units = I/1 | II/2| III/3 | IV/4 | V/5 | VI/6 | VII/7 | VIII/8 | IX/9
Tens = X/1 | XX/2 | XXX/3 | XL/4 | L/5 | LX/6 | LXX/7 | LXXX/8 | XC/9
Hundreds = C/1 | CC/2 | CCC/3 | CD/4 | D/5 | DC/6 | DCC/7 | DCCC/8 |
CM/9
Thousands = M/1 | MM/2 | MMM/3
RomanNumerals =

Thousands (<E>/0|Hundreds) (<E>/0|Tens) (<E>/0|Units) |
Hundreds (<E>/0|Tens) (<E>/0|Units) |
Tens (<E>/0|Units) |
Units

Enhanced Context-Free Grammars

Recursion
• In	a	Context-Free	Grammar,	the	expression	(to	
the	right)	can	contain	auxiliary	symbols

• What	happens	if	a	rule	is	defined	recursively	from	
itself?

Sentence =	Subject Verb (<E>	|	that	Sentence)
Subject =	Jean |	Mary	|	Eva	|	Joe
Verb	=	said	|	hoped	| thought	|	slept

Jean	said	that	Mary	hoped	that	Eva	thought	that	Joe	slept

Recursion
• In	a	Context-Free	Grammar,	the	expression	(to	
the	right)	can	contain	auxiliary	symbols

• What	happens	if	a	rule	is	defined	recursively	from	
itself?

Sentence =	Subject Verb (<E>	|	that	Sentence)
Subject =	Jean |	Mary	|	Eva	|	Joe
Verb	=	said	|	hoped	| thought	|	slept

Jean	said	that	Mary	hoped	that	Eva	thought	that	Joe	slept

There	are	three	types	of	recursion:

• Left	Recursion
NP =	NP (from |	in |	around)	Paris |	the	house

• Right	Recursion
Sentence =	NP	(thought	|	said	|	hopes	|	saw)	NP
NP =	Joe	|	Mary	|	that	Sentence

• General	Recursion
Sentence =	DET	NOUN (that	|	<E>)	Sentence	VERB

Recursion

Remove Left Recursion

• Left Recursion:
NP =	NP (from |	in |	around)	Paris |	the	house

• Left recursions can be removed automatically:
NP = the	house	 ((from |	in |	around)	Paris)*

Recursion

• Right Recursion:
Sentence =	NP	(thought	|	said	|	hopes	|	saw)	NP
NP =	Joe	|	Mary	|	that	Sentence

• Right recursions can be removed automatically:
Sentence =	((Joe	|	Mary) (thought	|	said	|	hopes	|	saw)	that)*

(Joe	|	Mary)	(thought	|	said	|	hopes	|	saw)	

Recursion
Remove Right Recursion

Example of a general recursion

Sentence =	DET	NOUN ((that	|	<E>)	Sentence	VERB |	VERB)

The cat is sleeping
The cat that my cousin bought is sleeping
? The cat that the neighbour my cousin knows bought is sleeping
* The cat that the neighbour the cousin her friend saw bought is sleeping
…

Recursion
Cannot remove General Recursion

• Linguists should not hesitate to use recursions to simplify
their grammar

• NooJ can remove left and right recursions automatically. If the
resulting grammar does not contain any more recursion, it is
equivalent to a regular grammar. NooJ can then apply it to
texts very efficiently.

• NooJ cannot remove all recursions. However, NooJ can
impose a limitation on the depth of the recursion (e.g.,
maximum 5 embedded relative clauses). The resulting
grammar can then be transformed into a regular grammar and
thus can be applied to texts efficiently.

Recursion
Conclusions

CONGRATULATIONS
You know how to construct Context-Free

Grammars and apply them to texts to
implement various NLP applications

